HISTORIC BRIDGE INVENTORY

Ocean-to-Ocean Bridge

PROPERTY	IDENTIFICATION
-----------------	----------------

county milepost Yuma

0.03

0.5 mi NE I 8

location city/vicinity

district

Yuma 82

inventory number

inventory route

Penitentiary Avenue

feature intersected Colorado River

310

309

USGS quadrangle Yuma East

08533

UTM reference

11.723383.3623720

STRUCTURAL INFORMATION

main span number 1

appr. span number 1 degree of skew

main span length 336.0 444.0 structure length

roadway width structure width

18.0

35.0

main span type

appr. span type

guardrail type

superstructure

substructure floor/decking

other features

steel pin-connected Pennsylvania through truss

concrete abutments, wingwalls and piers

rectangular eyebars; steel lattice guardrails

concrete deck with asphalt overlay

upper chord: 2 built-up channels w/ cover plate and double lacing; lower chord: 2 rectangular eyebars; vertical: 2 channels w/ lacing; diagonal: 4

HISTORICAL INFORMATION

construction date 1915

project number

information source ADOT bridge records

alteration date(s)

inventory score

1943 2002 designer/engineer

builder/contractor

structure owner

alterations

US Office of Indian Affairs

Omaha Structural Steel Works, Omaha NE Yuma County

deck replaced; bridge rehabilitated and "Ocean-to-

Ocean Highway" sign replicated

NATIONAL REGISTER EVALUATION

93

For additional information, see "Vehicular Bridges in Arizona 1880-1964" National Register Multiple Property Documentation Form

NRHP eligibility NRHP criteria

listed

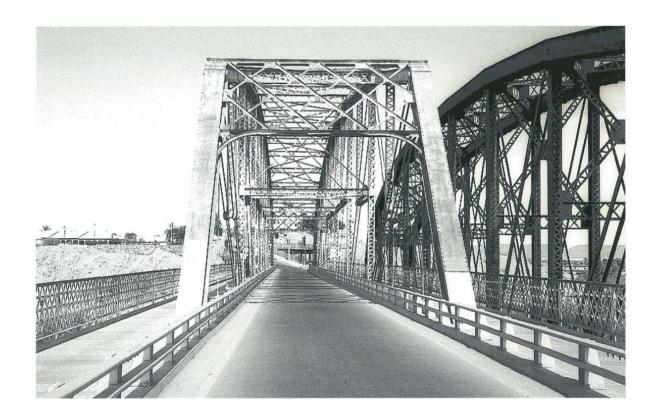
A x

Cx

signif. statement one of the most important wagon bridges in

В

Southwest


FORM COMPLETED BY

Clayton B. Fraser, Principal

FRASERdesign

420 South County Road 23E Loveland, Colorado 80537

31 October 2004

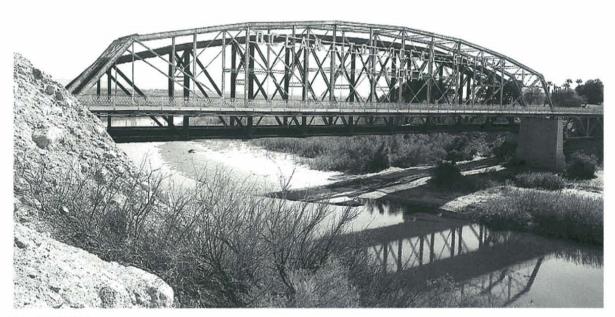


PHOTO INFORMATION

date of photo.: March 2003

view direction: west north photo no.: 03.03.145 03.03.146

CONSTRUCTION HISTORY

After years of agitating by Yuma citizens, Arizona Representative Carl Hayden in 1913 steered a bill through Congress authorizing construction of a steel highway bridge over the Colorado River at Yuma. Ostensibly to provide a crossing for the Yuma Indian Reservation across the river in California, the Yuma bridge was funded in part by the Office of Indian Affairs [OIA]. The State of Arizona would contribute \$25,000, as would Imperial County, California. OIA engineers in Washington designed this long-span through truss and located it at the foot of Prison Hill Road, near the Territorial Penitentiary, immediately upstream from the existing ferry here. As delineated, the structure consisted of a pin-connected Pennsylvania through truss, with a rigid-connected Warren deck truss approach span at one end. The trusses would be carried high over the river by concrete abutments and pier.

In June 1914 the OIA contracted with the Omaha Structural Steel Works of Nebraska to fabricate and construct the bridge for over \$72,000. But the OIA engineers were unfamiliar with the vagaries of the Colorado River, and problems arose soon after construction began in October. After the falsework was washed away twice that winter, Omaha Steel opted to erect the truss on barges and float it into position. On March 3, 1915, the 336-foot-long span was swung in a carefully choreographed maneuver amidst widespread celebrating throughout the town. On May 22 the bridge was ceremoniously opened to traffic. The bridge carried the Ocean-to-Ocean Highway for decades before the highway was superseded by Interstate 8. It still functions in place, bearing local city-street traffic. The structure has recently been rehabilitated and a replica of the original "Ocean-to-Ocean Highway" sign installed on one of its truss webs.


SIGNIFICANCE STATEMENT

The first train crossed the Colorado River on a bridge in September 1877, and the Yuma crossing has been a pivotal one for Southwestern transportation since. The Penitentiary Avenue bridge, located on a site originally intended for a railroad structure, formed a crucial link on the nationally important Ocean-to-Ocean Highway. "This is the first highway bridge built across the Colorado River in all its length," the Yuma Sun stated in 1915. Although the writer neglected the dozens of bridges at the river's upper reaches in Colorado, the Ocean-to-Ocean Bridge was the first highway span over the lower Colorado. Technologically, the structure is significant as the earliest and longest through truss in Arizona, the only Pennsylvania truss and one of only three pin-connected trusses among Arizona's vehicular structures. It is today distinguished as one of the most important early spans in the Southwest.

NATIONAL REGISTER EVALUATION

· 		
TECHNOLOGICAL SIGNIFICANCE represents the work of a master possesses high artistic values x represents a type, period or method of construction	HISTORICAL SIGNIFICANCE associated with significant persons associated with significant events or pat contributes to historical district	NATIONAL REGISTER CRITERIA _x
NATIONAL REGISTER ELIGIBILITY individually eligiblex _yes no contributes to districtyesx _ no	PERIOD OF SIGNIFICANCE: 1915-1	portation; Engineering 964 portation: Highways

716 FRASERDESIGN

Location Map

HISTORIC BRIDGE INVENTORY

Antelope Hill Bridge

PROPERTY	IDENTIF	ICATIO!	V

county

Yuma

milepost location

0.00

3.6 mi NW of Tacna

city/vicinity

district

Tacna

82

inventory number

inventory route

abd. abd. US 95

feature intersected Gila River

UTM reference

USGS quadrangle Wellton Mesq

11.779955.3623620

STRUCTURAL INFORMATION

main span number 15

appr. span number ()

degree of skew

main span length 65.0 structure length

roadway width structure width 18.0

16.0

975.0

main span type appr. span type

guardrail type

superstructure

substructure

floor/decking

other features

104

concrete two-beam deck girder concrete abutments, wingwalls and bullnosed piers

concrete deck

incised panels on girder spandrels; threaded steel

pipe guardrails (removed); concrete curbs

HISTORICAL INFORMATION

construction date 1915

project number

information source ADOT bridge records

alteration date(s) ca1950

designer/engineer Arizona State Engineer builder/contractor

structure owner alterations

Yuma County

bridge badly deteriorated, with several spans

Perry E. Borchers; convict work force

washed away

NATIONAL REGISTER EVALUATION

For additional information, see "Vehicular Bridges in Arizona 1880-1964"

National Register Multiple Property Documentation Form

inventory score

80

NRHP eligibility NRHP criteria

listed

A x

Cx

signif. statement

one of state's most important early wagon bridges,

located on important route


FORM COMPLETED BY

Clayton B. Fraser, Principal

FRASERdesign

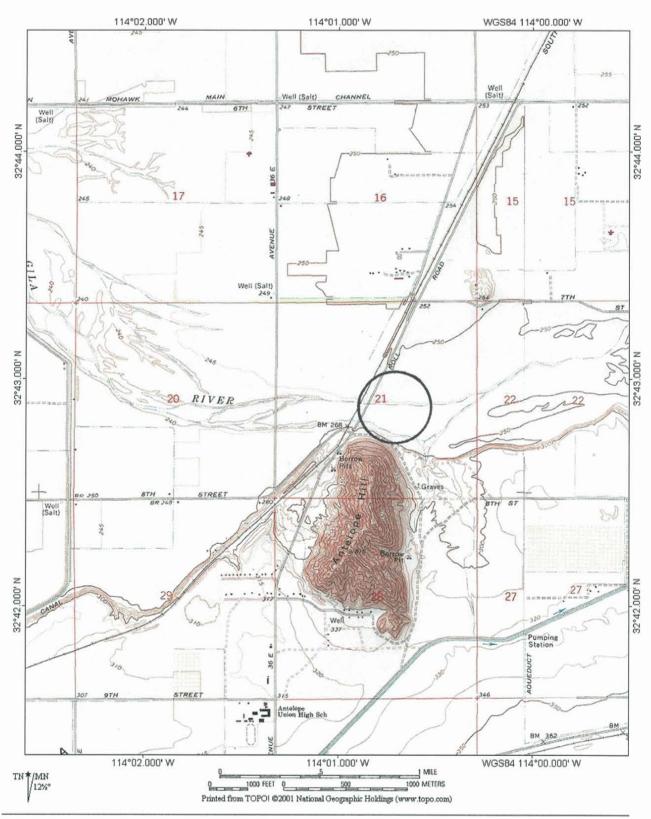
420 South County Road 23E Loveland, Colorado 80537

31 October 2004

PHOTO INFORMATION

date of photo.: March 2003 view direction: south west photo no.: 03.02.164 03.02.165

CONSTRUCTION HISTORY


An integral part of the Ocean-to-Ocean Highway across southern Arizona was the bridge over the Gila River. Located at the foot of Antelope Hill, it crossed this problematic river about 3½ miles northwest of Tacna. In 1912 Arizona State Engineer Lamar Cobb first surveyed sites at Antelope Hill and the nearby town of Dome and selected the former for a bridge. The next year his office designed a multiple-span concrete structure comprised of 15 girder spans supported by massive bullnosed concrete piers. The longest of these spans extended 65 feet, and the bridge's overall length was almost 1000 feet, not including the timber trestle approaches on the ends. In December Cobb advertised for competitive bids to build the immense structure, Opting instead to use prison labor, the state rejected all bids. Cobb then redesigned and rebid the project when it became apparent that not enough prison manpower would be available. In May 1914 Perry Borchers was hired to build the bridge. But Borchers was in over his head. He began construction in June but soon defaulted, and after floods damaged the partially completed structure that winter, the state again undertook the project with prison laborers. The Antelope Hill Bridge was finally opened to traffic on August 18, 1915, with a gala picnic attended by thousands of well-wishers. With a poorly selected site, however, it suffered extensive damage with almost every major flood on the Gila. After years of repeated reconstruction of the concrete bridge and timber pile approach trestles, the Antelope Hill Bridge was replaced in 1929 by the McPhaul Bridge [abd.] and vacated. Today it stands abandoned in place in badly deteriorating condition, with the steel pipe guardrails removed, the deck disintegrating and some of its spans and piers washed away.

SIGNIFICANCE STATEMENT

As a major crossing on a nationally important transcontinental route, the Antelope Hill Bridge is significant for its pivotal role in early Arizona transportation. The bridge is also significant in Arizona history as one of the few structures remaining from the early state period that had been built using prison labor. The bridge is technologically significant as an outstanding example of a formative structural type. Although numerous concrete girder bridges were erected throughout Arizona in the 1910s, 1920s and 1930s, most featured designs with four or more relatively shallow girders. The earliest concrete girders in Arizona typically employed two-girder designs. Of these, only the Santa Cruz [8166], Hell Canyon [abd.], and Antelope Hill bridges remain. The Antelope Hill Bridge is now in ruins, due to the ravages of the Gila River. Although this has impacted its structural integrity seriously, the bridge still conveys a sense of its intact self. The destruction from the river is an integral part of its history, and the extensive damage adds to the bridge's interpretive value. The Antelope Hill Bridge is an important early remnant of highway construction in Arizona.

NATIONAL REGISTER EVALUATION

TECHNOLOGICAL SIGNIFICANCE represents the work of a master	HISTORICAL SIGNIFICANCE associated with significant persons	NATIONAL REGISTER CRITERIA X Criterion A
possesses high artistic values	_x associated with significant events or patter	ns Criterion B
$\underline{\hspace{1cm}}$ represents a type, period or method of construction	contributes to historical district	_x_ Criterion C
NATIONAL REGISTER ELIGIBILITY individually eligible	PERIOD OF SIGNIFICANCE: 1915-196	ortation; Engineering 4 ortation: Highways

Location Map

HISTORIC BRIDGE INVENTORY

McPhaul Bridge

PROPERTY IDENTIFICATION

county

Yuma

milepost location

0.00

0.2 mi N of Dome

city/vicinity district

Dome 82

inventory number

inventory route feature intersected Gila River

UTM reference

abd. US 95

abd.

USGS quadrangle Laguna Dam

11.741563.3627538

STRUCTURAL INFORMATION

main span number 1

appr. span number () degree of skew

main span length 798.0 structure length 1184.0

roadway width

14.7 21.0 structure width

main span type

appr. span type

guardrail type superstructure

substructure

floor/decking other features 313

steel suspension bridge with rocker-type towers

concrete abutments, deadmen and spill-through

timber deck with asphalt overlay

main suspension cable: 3 parallel strands of 290 #8 Roebling bridge wire (5-3/4" diameter); rocker-type braced steel towers (70.5' tall) w/ cast steel cable cradles; rigid Warren pony stiffening trusses

HISTORICAL INFORMATION

construction date 1929

project number information source ADOT bridge records

alteration date(s)

alterations

structure owner

designer/engineer Arizona Highway Department

builder/contractor Levy Construction Company, Denver CO

Yuma County

NATIONAL REGISTER EVALUATION

For additional information, see "Vehicular Bridges in Arizona 1880-1964" National Register Multiple Property Documentation Form

inventory score

91

NRHP eligibility

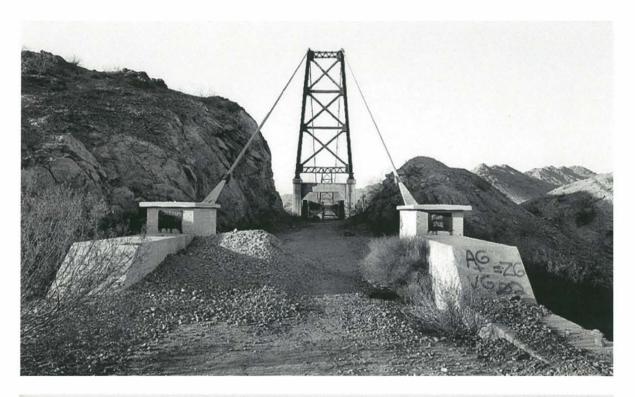
listed

NRHP criteria

A x signif. statement

В C x

extraordinary long-span example of uncommon structural type, located on important route


FORM COMPLETED BY

Clayton B. Fraser, Principal

FRASERdesign

420 South County Road 23E Loveland, Colorado 80537

31 October 2004

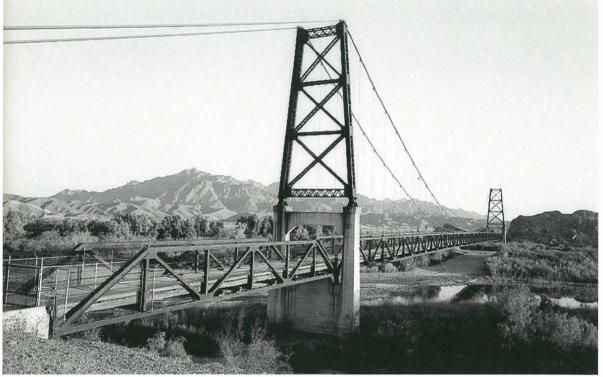


PHOTO INFORMATION

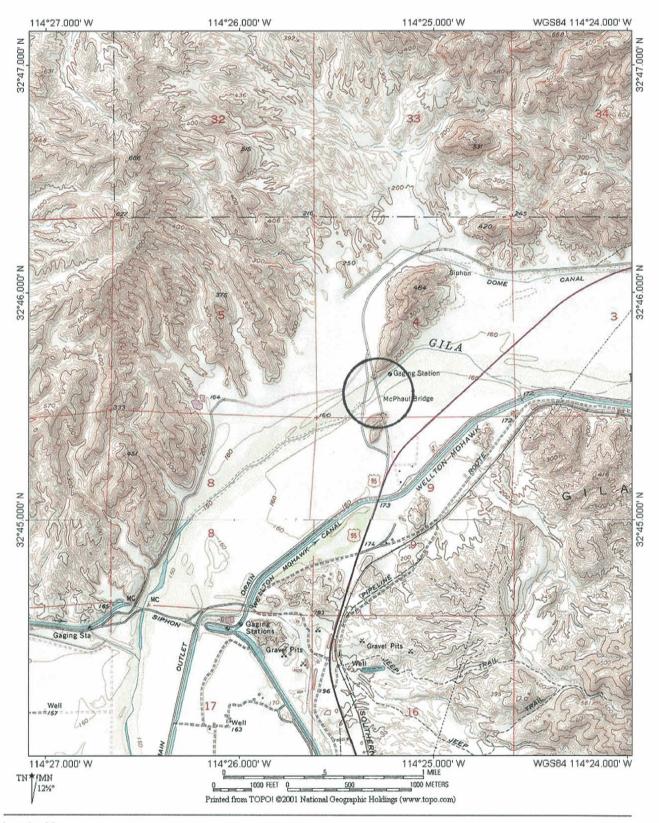
date of photo.: March 2003

view direction: north southeast

photo no.: 03.03.186 03.03.193

CONSTRUCTION HISTORY

When Arizona State Engineer Lamar Cobb first looked for a crossing location of the Gila River for the Ocean-to-Ocean Highway in Yuma County, he inspected sites at Dome and Antelope Hill and chose the latter. The Antelope Hill Bridge [abd.], a multiple-span concrete girder structure, was completed in 1915 and immediately began suffering damage with almost every flood on the Gila. Eventually, after years of repairs, it was abandoned altogether. The highway had already been rerouted through Telegraph Canyon, eliminating the need for the bridge altogether, when the Highway Department decided to replace the existing ford at Dome with a bridge. Soundings were taken, a site selected near a granite outcrop, and in 1927 the engineers decided to avoid the scouring problems of the Antelope Hill Bridge by free-spanning the river completely with a long suspension bridge.


In January 1928 AHD contracted with the Levy Construction Company of Denver to build the structure for \$152,454. Although AHD engineers had outlined the bridge's location and span, Levy engineered the bridge itself with the assistance of nationally known consulting engineer Ralph Modjeski. Construction began in mid-1928 and was completed in December 1929. The McPhaul Bridge carried traffic on US 95 until its replacement in 1968. It was abandoned in place and, though closed, still spans the Gila River in unaltered and relatively good condition.

SIGNIFICANCE STATEMENT

The McPhaul Bridge is significant for several reasons. First, it formed an integral link on a regionally important north-south highway in western Arizona. Second, it was one of two bridges in the state (other: Red Rock Bridge (J.A.L. Waddell)) associated with a pre-eminent American civil engineer—in this case Pennsylvania engineer Ralph Modjeski. Finally the McPhaul Bridge is technologically important as one of two vehicular suspension spans in Arizona (other: Cameron Bridge). Its rocker-type towers are rare among suspension bridges, distinguishing this structure even further among the vehicular spans in the state. Because of their exotic nature and high construction costs, suspension bridges were infrequently erected in this country, and few from the pre-Depression era have remained intact. The McPhaul Bridge is also noteworthy for its scale. At the time of its completion, the bridge had the longest span length of any bridge in the state, and it has the longest span among all the bridges in the inventory. Strikingly beautiful, graceful and exotic as well as historically and technologically important, the McPhaul Bridge is among Arizona's most important vehicular structures.

NATIONAL REGISTER EVALUATION

TECHNOLOGICAL GIGNIEGANICE	LUSTOPICAL CICALISICALICE	NATIONAL DEGICTED CONTRA	
TECHNOLOGICAL SIGNIFICANCE	HISTORICAL SIGNIFICANCE	NATIONAL REGISTER CRITERIA	
represents the work of a master	associated with significant persons	x Criterion A	
possesses high artistic values	x associated with significant events or patterns	Criterion B	
x represents a type, period or method of construction	contributes to historical district	_x_ Criterion C	
NATIONAL REGISTER ELIGIBILITY individually eligiblex _ yes no contributes to districtyesx _ no	PERIOD OF SIGNIFICANCE: 1929-1964	ation; Engineering	
contributes to district yes _x _no	memeta).	adon. Ingnways	

Location Map